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Nonlinear standing waves in bounded plasmas
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An analytical model for nonlinear volume oscillations in a bounded cold plasma is developed. Although here
the familiar propagating wave solutions do not exist, exact nonlinear standing waves subject to appropriate
boundary conditions can nevertheless be found. The behaviors of the electrons and ions are described self-
consistently in terms of Lagrangian variables. The analytical solutions are compared with that from particle-
in-cell simulations. Good agreement is found in the regimes of interest.
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[. INTRODUCTION turbative analysis of nonlinear oscillations in a
multicomponent cold plasma cloud. The plasma is thus
Nonlinear cold plasma oscillations is a topic of consider-bounded in the region
able interest since it is the simplest nonlinear collective phe- 5 1o
nomenon in plasmas. Theoretical descriptions of such oscil- 2
lations usually rely on perturbation methods. In certain r:(izl Xi ) <R(1),
special cases, exact solutions can also be found. Such solu-

tions are not only useful in interpreting observed phenomenghereD = 1,2 or 3 for the slab, cylinder or spherical plasma
in more detail, they are also needed for verifying new anageometry, respectively. In view of eventual applications to an
lytical approximations and numerical schemes. A solutiongjectron-positron plasma, for which the present problem is of
describing nonlinear plasma waves in an infinite cold plasm%pecia| interes{6], we do not invoke the large ion mass
was given by Akhiezer and LyubarsKil]. It is a special approximatior{7]. All particles are then treated on the same
solution of the cold plasma equations: all variables depengeve| in terms of Lagrangian variables. Furthermore, in order
on space and time only through the combinatigft  that realistic conditions at the boundaftp be defineil can
—Xlvp,, where the phase velocityy, is constant. Math-  pe applied and studied, we allow for self-consistently deter-
ematically, the governing equations are then reduced to gined boundary evolution. The latter is important since in
much simpler set of ordinary differential equations describ-applications it often occurs that a physical boundary is not
ing stationary traveling waves. The coordindtés suitable  necessarily the plasma boundary, especially when the plasma
only if the spatial extent is infinite in the direction. For a is not in a steady state. The solutions found exactin the
bounded system this approach is not useful since the movingense that starting from the cold plasma fluid equations no
coordinate¢ in general cannot describe a given boundaryapproximation or truncation is made. Exact solutions for
properly. In fact, nonlinear standing surface waves innonlinear boundary problems are extremely rare, and the few
bounded plasmas are still not well understood, althougltases in which they can be found are consequently of great
some progress has been magdg In particular, Dawso3]  interest. Such solutions usually describe the plasma behavior
obtained general solutions for an electron fluid with fixedin a simple manner. They are thus especially suitable as a
ions using Lagrangian variables. With this approach, solustarting point for understanding the nonlinear behavior of
tions for a bounded plasma can also be obtai@ddDaw-  plasmas. We also investigate the relation between divergent

son’s solution has since then been generaliZgdbut only  cold plasma solutions and the boundary behavior.
for a non-self-consistent ion distribution.

Most existing studies of oscillations in bounded plasmas
assume that the oscillations take place in a plasma rigidly
bounded by a real or virtual wall, and boundary conditions We shall consider spatially symmetric oscillations, so that
are thus applied at the rigid plasma-wall or plasma vacuunthe plasma parameters depend on the tirmad one spatial
interface. However, in many plasmas, because of their gasrariabler. For the slab geometry this does not impose any
eous nature and the electrostatic effects, the plasma boundasignificant restriction on our model. For the cylindrical or
is self-consistently determined and almost never rigid. Inspherical geometry, we shall assume radial symmetry. The
fact, it is expected that the boundary behavior and the oscilplasma is described by the standard cold-fluid model
lations affect each other. In order to investigate such a sce-
nario, in this paper we present the results of a direct nonper- dn,+V-(n,v,) =0, (1)

II. BASIC EQUATIONS
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du It should be pointed out that if the surface is allowed to
IVt (Vo V)V, =—E, (20  deform asymmetrically, nonlinear surface currents will have
Ma to be considered.

V-E=47, q,N,, 3 lll. NATURE OF THE SOLUTIONS

Equations(1)—(6) form a closed set. Despite of the sym-
where the electric fieldE is purely electrostatic and de-  metry assumed, the set is strongly nonlinear and complex,
notes the particle species. Herg,(r,t), v,(r,t), q,, and  especially because of the boundary conditions. Nevertheless,
m, are the particle density, velocity, charge, and mass, reit is possible to obtain a class of special solutions for this
spectively. problem.

We now consider the boundary conditions atR(t), the The key feature of the special solutions we seek is that the
boundary of the plasma. For a multicomponent plasma it iplasma velocity and electric field have a linear spatial depen-
then first necessary to defirik For that purpose we intro- dence, namely
duce an average velocity of the plasma fluid,

Ne=Na(t), Ve=va(O)r, E=E(r, (7)
; MaNaVe so that the basic equatiori$)—(3) are reduced to a set of
V=——"-—, ordinary differential equations. The reduction is exact in the
2 m,n,, sense that no approximatide.g., series expansion or higher
a harmonics truncationhas been made. The electric field dis-

o ] tribution corresponds to the well-known parabolic potential
which is the ratio of the total momentum flux and mass denyhijch appears in many laboratory plasma models.

sity. Generally, it is close to the velocity of the heavy species. The Anzdze(7) have been used earlier fone-component
Assuming a free boundary, the evolution of the latter is dGSystems to describe nonlinear surface and volume w@les
termined by the normal component of the fluid velocity, i..,as well as for oscillations of trapped non-neutral plasf@as
by the radial component, for our geometry. Thus and gravitating fluid§10]. We now apply it to a multicom-
ponent system. To understand the underlying physics and to
dR(t) =V, (r,1)| (4) simplify the algebra, it is practical to use Lagrangian coordi-
dt =R nates. We let, be the initial position of some plasma par-

) ) ticle, and assume that the motion of the particle is given by
whereR(0)=R,. We note that this self-consistent plasma-(t)=A_(t)r,, where the propagatok,(t) is identical for

determined boundary condition differs from those of mosty|| particles of the same type. The corresponding fluid veloc-
existing studies of nonlinear plasma oscillations, where &y is then given by Eq(7), with
rigid metal or dielectric boundary is assumed.
If the difference betweervV andv, is small, then the ~ 1 dA,1)
resulting thin layer of charge separation can be replaced by a V()= A1) dt
surface charge at=R(t). Due to the symmetry there is no “
surface current, and the surface charge densityoes not andA _(0)=1. The transformation to the variabfe, leads

depend on the spatial variables, so that o(t). It is deter-  to significant simplification. The continuity equation be-
mined by the equation comes

do D-1dR N
- b 5= — Oa
Gt TR a0 2 GV Volry, O (0= 5

where the term on the right hand side is responsible for thgith n, , being the initial density. Equatiof8) leads to
charge supplied at the boundary by the electric current. The “

second term on the left-hand side originates from the time- 5 4 UNoe
dependent boundary curvature. It is of interest to point out E(t)= D 2 5 (8)
that even if there is no radial current to the boundar., @ Ag(t)
v,=V), o(t) can still vary due to changes of the boundary.
Equation (5) results then ino(t)R(t)° " *=const, demon-
strating charge conservation. 2
Finally, the electric field should satisfy the boundary con- 1 d°A) :4_77 Yo YN0
dition ALt)  dt? D m, 5 Ay )P

so that the Euler equation can be put in the closed form

(©)

E,ui—En=470, (6)  which then completely determines the plasma dynamics.
Before proceeding it is first necessary to preclude the pos-
whereE;, andE,, are the radial components of the electric sibility that two fluid particles starting from, andr,, say at
field atr =R(t) inside and outside the plasma, respectively.t=_0, intersect at some later time Since the trajectories of
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any two particles are given b&,(t)r; andA,(t)r,, an in- d?Aq(t) wge 1

tersection is possible only at the origin and it takes place if 2 "D 5~ oAb, (14

and only if the propagatoA ,(t,) is identically zero. Only dt Ae(t) Ai(t)

solutions withA_(t)>0 are then physically meaningful in )

the cold plasma framework. d®Ai(t) oy 1 3 At 15
We now turn to the boundary conditions. It is useful to d2 D A(HP  Alt)P (), 9

introduce the quantities
where w,, = (4mg2n,,/m,) ¥ is the plasma frequency of
w(=3 MaNoa o= GaNoa the speciesy=e,i. Recall thatA,(0)=1 andD is the di-
A, (t)°’ « A (t)P’ mension of the system. The equations are valid as long as
A,(t)>0, otherwise the trajectories intersect and collapse
which represent the mass and charge densities of the plasntzcurs.

respectively. The fluid velocity¥ and current density can The simplest solutiorA,=1 corresponds to an equilib-
then be put into the form rium of the cold plasma cloud. It should be mentioned that
the equilibrium exists only because of the neglect of the
11 du o ~1ldp pressure forces in the governing equations. Generally the
V=- D u(t) ac " J_g QeNaVe= "5 Gt" plasma tends to expand, forming both a front moving for-

ward and a backward propagating rarefraction wig.
where both right-hand sides are total derivatives. Equatiof\ny constant-density cloud will thus be destroyed in a time

(4) can thus be integrated to Ry/cs, the ratio of the plasma half-size and the sound speed.
However, this time scale is large compared with the period of
w(t)R(t)P=const, (10)  the plasma oscillations studied here.

For small(linean oscillations around the equilibrium, we
which confirms total mass conservation. UsiR{f) and the  readily obtain two characteristic modes. One corresponds to
expression8) for E, we can calculate the electric fields on the expected plasma oscillations with the frequenﬁj)e(
the plasma boundary + wgi) Y2 and the other is a zero frequency mode. The latter is

confirmed by the existence of a solution witly(t) = A;(t),

(11) and both functions being linear in The solution describes
plasma expansion with constant speed. That is, the cloud is
unstable even in the pressureless model.

the latter being valid for any plasma with radial symmetry  Qur results are valid for arbitrary mass ratio. Nontrivial

4
Eln:Fp(t)R(t)! Eout: 0,

and overall plasma neutrality. Equati¢f) then becomes  new results can also be obtained for electron-ion plasmas. In
d D—1dR 14 4R this case, we consider oscillations in the expanding plasma
do -2 OR __=-9 _-= cloud and neglect terms of order,/m;. We have then
dat TR at’W=Tp g RO ge® (12 o
Vot
where Eq.(10) was used to get rid ofc(t). Equation(12) Ai=1+ Ry’

can be put into the integrable form

1 where the constant is the fluid velocity. FolVy<0 the ion
R(1)P Lo (t)+ = R(1)Pp(t) | =0, trajectories inevitably intersect, resulting in collapse of the
D solution, and forVV;>0 the plasma expands. Note that de-
_ _ . ) spite the small mass ratio, the ions do move and therefore
which simply verifies charge conservation. Thus, we have atfect the electron dynamics. The latter is described by

dt

1
o(t)=—=p(OR(1), (13 d’A, 1
b DdTZ +(1+T/k)DAE(t)

Ag(t)P~H 1
which is a consequence of overall plasma neutrality. From
Egs.(11) and(13) we see that the boundary conditits) for wherer=wpd is a dimensionless time, and the parameter
the electric field is satisfied exactly. The problem is then
reduced to solving Eq9). K= @peRo

Vo
IV. RESULTS . . L .
is the ratio of the characteristic ion and electron time scales

We see that the dynamics of the system is solely deterin this problem. ForVy=0, Eq. (16) was considered by

mined by Eq.(9). For simplicity we now consider a two- Dawson[3], who obtained solutions for fixed ions.

component plasma with equal number of negatielyand We now take into account the ion dynamics. Equation
positively (i) charged particles ang.= — ;. We have then (16)is linearifD=1 (e.g., in the slab geomeiryin this case
two second-order equations, namely we can directly solve it to obtain
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solutions might appear in reality, we have also performed
particle-in-cell(PIC) simulations of the corresponding prob-
lem in one dimension. We followed 4Celectrons and as
many ions or positrons. Due to symmetry only the region
>0 needs to be considered in the computation. Each particle
represents a layer with a surface chargeand n, is the
number of such layers per unit lengthtat0. The electric
field is normalized by 4rqngR, the time by 1é,, and the

Initially the electrons and iongpositrong were distrib-

X3
X2 uted with constant and equal densities, and a sharp boundary
X1 at x=R, was assumed. To allow for plasma expansion the
2 4 6 8 10 12 14 16 total area of the computation was taken to be considerably
Wpet larger thanRy. The boundary atx=0 representing the

plasma center was taken to be both absorbing and reemitting,
and the boundary at the vacuum side was assumed to be
absorbing only. The particles were initialized with a Max-
wellian velocity distribution such thaRy=200\4., where
Nge IS the electron Debye length. The electric field was com-
0puted by integrating the charge density starting filemO0 at
x=0. In the simulation the plasma was warm, so that the
validity of our analytical cold plasma model can be studied.
The temperature ratio was 25 for an electron-ion plasma, and
A, can then be simplified to unity for an electron-positron plasma. _
In general, the plasma slowly expands, forming both a
A=A +CYAsinM2k(VA —1)], (17)  frontand ararefraction wave. Oscillations were initialized by
forcing the particles to perform addition@onthermal mo-
whereC is a constant. The other plasma parameters can thd#n with initial velocities proportional to their positions.
be readily obtained. Fo¥,—0 our solution becomed,  Thus, the initial regular particle velocity inside the plasma
=1+ Csinw,d, which is similar to that given earlig]. ~ ranges from 0 ax=0 to RodA, /dt|;_o atx=Ry. The mag-
Equation(17) shows that the electron oscillations are bothnitude dA,/dt[;_, was taken to be small enough to avoid
aperiodic and modulated by the ion motion. large velocities of the boundary particles. In most cases a
Let us now consider the possibility of collapse. It is clearlinear approximation to Eqg14) and (15 should thus be
from Eq.(17) thatA, can change sign, resulting in trajectory sufficient.
intersection. Such a Co||apse occur€iexceeds some criti- First we consider small oscillations. The velocities of the
cal value C*(k)~1. Figure 1 shows the trajectories of boundary electrons and ions were2(thermal velocity and
neighboring electrons fok=50 and two values of. The  0.5cs, respectively, and the mass ratio wag/m,=900. To
regular trajectories foE<C* are replaced by the intersect- obtain the density we evaluated the fluid velocity from
ing ones forC>C*. In the latter case our cold plasma solu- the initial conditions, and took the region<0.8(Ry+ Vt)
tion becomes invalid after a finite time. as the uniform-density center of the plasma. The correspond-
ForD=2,3, Eq.(16) is both nonlinear and nonautonomic. ing values ofn,(t) were compared with that predicted by
Analytical solutions can only be obtained for either smallEds.(14) and(15) as shown for the electrons in Fig. 2. The
oscillations or nonlinear ones withyo=0. More general

FIG. 1. Coordinatdarbitrary unit$ versus time for neighboring
electrons:(a) regular behavior(b) collapsing solution.

Ae=A+ VA C 31 (2KVA) +C Y1 (2kVA) T,

whereJ andY are the Bessel functions of the first and secon
kind. The constants; , should be chosen to satisfy the con-
dition A,(0)=1.

In practice, the ratid is usually large. The expression for

cases must be obtained numerically. All solutions show that 1o :

the nonlinear oscillations are modulated and aperiodic. Fur- i ff 1

thermore, for time scales comparable witlwJ/, the terms 1 SEEN

of orderm,/m; cannot be neglected. Equatiofigl) and(15) A AR, 2

can no longer be separated, and must be solved numericalhne ! f 1

An interesting case is the electron-positron plasma with ng 0. ! 14 1
me=m,, so that the plasma frequencies in E¢s4) and ARE {
(15) are equal. The motion of the positrons must thus be 0.98 § § &
taken into account from the very beginning. Numerical solu- :
tions for this case are included in the next section. RR'S

20 40 60 80
Wpet

100 120 140

V. SIMULATIONS

In this section we obtain numerical solutions of E¢i<}) FIG. 2. Electron density versus time for small perturbations. The
and (15 for self-consistently evolving electron-ion and simulation result(pointy agrees well with that of theorysolid
electron-positron plasma clouds. To see how these specitihe).
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FIG. 3. Typical behavior of the electric field for large perturba-  FIG. 5. E versus time for a rapidly expanding electron-positron
tions. The theorythick line) correctly matches the linear part of the plasma. Simulatiofipoints is in good agreement with theo(golid
electric field inside the plasma. line).

density decrease due to the plasma expansion can clearly g&/en by R,+ V,t. The theory agrees well with the simula-
observed. The theory agrees well with the simulation fortion, as shown in Fig. 5 for the electric field. The plasma
several tens of oscillation periods. density decreases considerably within the simulation period

Next we consider the case of strong perturbations: th@ecause of the fast expansion, the rate of the decrease is also
velocity of the boundary electrons was taken to be20 in a good agreement with the theory.

m; /me=2500, anddA; /dt|;_,=0. Figure 3 shows the typi- All the above solutions correspond to cases Wit»0,
cal spatial behavior of the electric field from the theory ande.g., the plasma expands. If initially one Nag<0, the so-
simulation at one particular instanifd=12). lution of Egs.(14) and(15) shows collapse behavior. That is,

We see that Eqg14) and (15) correctly describe the be- A (t) tends to zero for one of the species, and the density
havior of the electric field inside the evolving plasma. Wetends to infinity. The collapse is related to the trajectory in-
have also obtained the best linear fit of the electric field atersection ak=0.
the uniform-density center of the plasma and compared it Collapse rapidly occurs for very strong perturbations with
with the theoretical value oE, as shown in Fig. 4. Good dA./dt~wy. For instance, let us consider an electron-
agreement occurs for several periods. The simulation showgositron  plasma  with dA./dt|—o=—0.50,. and
a steady modulation of the electric field. This asymmetricdA,/dt|,_,=0. We used 1D particles for the simulation. A
modulation may be attributed to the mixing phenomena dudypical electron and positron density evolution at one par-
to the nonuniform density at the plasma boundaly ticular instant (& =2.2) is shown in Fig. 6.

We have also simulated an electron-positron plasma with The analytical theory is now applicable only to a rapidly
m.=m,. The plasma also expands naturally, but with a rateshrinking region with approximately constant density near
larger than that of the electron-ion plasma. The size of th&«=0. We determinedc,(t) for x<2\4 and compared it
boundary layer quickly becomes comparable to that of thevith the theory. The positron density presented in Fig. 7
uniform-density region. Oscillations were initialized in the clearly shows tendency of collapse, but the singularity pre-
expanding layer. The boundary electrons and positrons werdicted by the theory was not realized in the simulation. Note
given the initial velocities 20, and 1@, respectively. The

size of the uniform-density region is again approximately 5
Wpet=2.2
0.1 4.-1 pe
o.osﬂ 3t
s ] Na
g* 1 g PV~
53 0 < 4 L
<
~ 111
= -0.05 1 19 1t
-0.1 H 0 \ AN
0 0.2 0.4 0.6 0.8 1 1.2 1.4
0 20 X/Ro

_ FIG. 6. Electron(thin line) and positron(thick line) density
FIG. 4. E versus time obtained from the simulatiquointg and  versus position for a collapsing solution. The theory describes only
theory(solid line). The plasma is significantly perturbed. the small constant-density region near the plasma center.
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35 and oscillations are allowed to evolve naturally. Analytical

Y solutions for cold plasma oscillations are obtained. The so-

~ lutions are exact in the sense that no approximatexg.,

25¢f series expansion or higher harmonics truncatibas been
o 20} B made. The evolution is subject to realistic boundary condi-
P Y tions. In contrast to the earlier works on bounded plasmas
Do 45} where a fixed physical boundary is usually assumed, we al-
1ot low for the fact that the plasma boundary may not be the
original one. In fact, our results are also applicable to iso-
5f lated plasma clouds in vacuum. Furthermore, we do not ap-
: : . . _ ply the two-time-scale approach and do not use the large ions
0 0.5 1 1.5 2 2.5 3 mass approximation. All particles are treated at the same

level in terms of Lagrangian variables. Thus equations ob-
FIG. 7. Positron density from simulatiofpoints and from tained are also applicable to electron-positron plasmas. The

theory (solid line) versus time for a collapsing solution. solutions show that the plasma oscillations and boundary
evolution are strongly related. The results agree well with

that collapse first occurs for the positrons, although only thdhat of PIC simulations for the regimes of interest.
electrons were initially perturbed.
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