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Nonlinear standing waves in bounded plasmas
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An analytical model for nonlinear volume oscillations in a bounded cold plasma is developed. Although here
the familiar propagating wave solutions do not exist, exact nonlinear standing waves subject to appropriate
boundary conditions can nevertheless be found. The behaviors of the electrons and ions are described self-
consistently in terms of Lagrangian variables. The analytical solutions are compared with that from particle-
in-cell simulations. Good agreement is found in the regimes of interest.
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I. INTRODUCTION

Nonlinear cold plasma oscillations is a topic of consid
able interest since it is the simplest nonlinear collective p
nomenon in plasmas. Theoretical descriptions of such os
lations usually rely on perturbation methods. In certa
special cases, exact solutions can also be found. Such
tions are not only useful in interpreting observed phenom
in more detail, they are also needed for verifying new a
lytical approximations and numerical schemes. A solut
describing nonlinear plasma waves in an infinite cold plas
was given by Akhiezer and Lyubarskii@1#. It is a special
solution of the cold plasma equations: all variables dep
on space and time only through the combinationj5t
2x/vph, where the phase velocityvph is constant. Math-
ematically, the governing equations are then reduced
much simpler set of ordinary differential equations descr
ing stationary traveling waves. The coordinatej is suitable
only if the spatial extent is infinite in thex direction. For a
bounded system this approach is not useful since the mo
coordinatej in general cannot describe a given bounda
properly. In fact, nonlinear standing surface waves
bounded plasmas are still not well understood, althou
some progress has been made@2#. In particular, Dawson@3#
obtained general solutions for an electron fluid with fix
ions using Lagrangian variables. With this approach, so
tions for a bounded plasma can also be obtained@4#. Daw-
son’s solution has since then been generalized@5#, but only
for a non-self-consistent ion distribution.

Most existing studies of oscillations in bounded plasm
assume that the oscillations take place in a plasma rig
bounded by a real or virtual wall, and boundary conditio
are thus applied at the rigid plasma-wall or plasma vacu
interface. However, in many plasmas, because of their g
eous nature and the electrostatic effects, the plasma boun
is self-consistently determined and almost never rigid.
fact, it is expected that the boundary behavior and the os
lations affect each other. In order to investigate such a s
nario, in this paper we present the results of a direct non
1063-651X/2002/66~4!/046403~6!/$20.00 66 0464
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turbative analysis of nonlinear oscillations in
multicomponent cold plasma cloud. The plasma is th
bounded in the region

r 5S (
i 51

D

xi
2D 1/2

<R~ t !,

whereD51,2 or 3 for the slab, cylinder or spherical plasm
geometry, respectively. In view of eventual applications to
electron-positron plasma, for which the present problem is
special interest@6#, we do not invoke the large ion mas
approximation@7#. All particles are then treated on the sam
level in terms of Lagrangian variables. Furthermore, in or
that realistic conditions at the boundary~to be defined! can
be applied and studied, we allow for self-consistently de
mined boundary evolution. The latter is important since
applications it often occurs that a physical boundary is
necessarily the plasma boundary, especially when the pla
is not in a steady state. The solutions found areexactin the
sense that starting from the cold plasma fluid equations
approximation or truncation is made. Exact solutions
nonlinear boundary problems are extremely rare, and the
cases in which they can be found are consequently of g
interest. Such solutions usually describe the plasma beha
in a simple manner. They are thus especially suitable a
starting point for understanding the nonlinear behavior
plasmas. We also investigate the relation between diverg
cold plasma solutions and the boundary behavior.

II. BASIC EQUATIONS

We shall consider spatially symmetric oscillations, so th
the plasma parameters depend on the timet and one spatial
variable r. For the slab geometry this does not impose a
significant restriction on our model. For the cylindrical
spherical geometry, we shall assume radial symmetry.
plasma is described by the standard cold-fluid model

] tna1“•~nava!50, ~1!
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] tva1~va•“ !va5
qa

ma
E, ~2!

“•E54p(
a

qana , ~3!

where the electric fieldE is purely electrostatic anda de-
notes the particle species. Here,na(r ,t), va(r ,t), qa , and
ma are the particle density, velocity, charge, and mass,
spectively.

We now consider the boundary conditions atr 5R(t), the
boundary of the plasma. For a multicomponent plasma
then first necessary to defineR. For that purpose we intro
duce an average velocity of the plasma fluid,

V5

(
a

manava

(
a

mana

,

which is the ratio of the total momentum flux and mass d
sity. Generally, it is close to the velocity of the heavy speci
Assuming a free boundary, the evolution of the latter is
termined by the normal component of the fluid velocity, i.
by the radial componentVr for our geometry. Thus

dR~ t !

dt
5Vr~r ,t !ur 5R(t) , ~4!

whereR(0)5R0. We note that this self-consistent plasm
determined boundary condition differs from those of m
existing studies of nonlinear plasma oscillations, where
rigid metal or dielectric boundary is assumed.

If the difference betweenV and va is small, then the
resulting thin layer of charge separation can be replaced
surface charge atr 5R(t). Due to the symmetry there is n
surface current, and the surface charge densitys does not
depend on the spatial variables, so thats5s(t). It is deter-
mined by the equation

ds

dt
1

D21

R

dR

dt
s5(

a
qana~var2Vr !ur 5R(t) , ~5!

where the term on the right hand side is responsible for
charge supplied at the boundary by the electric current.
second term on the left-hand side originates from the tim
dependent boundary curvature. It is of interest to point
that even if there is no radial current to the boundary~i.e.,
va[V), s(t) can still vary due to changes of the bounda
Equation ~5! results then ins(t)R(t)D215const, demon-
strating charge conservation.

Finally, the electric field should satisfy the boundary co
dition

Eout2Ein54ps, ~6!

whereEin andEout are the radial components of the elect
field at r 5R(t) inside and outside the plasma, respective
04640
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It should be pointed out that if the surface is allowed
deform asymmetrically, nonlinear surface currents will ha
to be considered.

III. NATURE OF THE SOLUTIONS

Equations~1!–~6! form a closed set. Despite of the sym
metry assumed, the set is strongly nonlinear and comp
especially because of the boundary conditions. Neverthe
it is possible to obtain a class of special solutions for t
problem.

The key feature of the special solutions we seek is that
plasma velocity and electric field have a linear spatial dep
dence, namely

na5na~ t !, va5 ṽa~ t !r , E5Ẽ~ t !r , ~7!

so that the basic equations~1!–~3! are reduced to a set o
ordinary differential equations. The reduction is exact in t
sense that no approximation~e.g., series expansion or highe
harmonics truncation! has been made. The electric field di
tribution corresponds to the well-known parabolic potent
which appears in many laboratory plasma models.

TheAnzätze~7! have been used earlier forone-component
systems to describe nonlinear surface and volume waves@8#,
as well as for oscillations of trapped non-neutral plasmas@9#
and gravitating fluids@10#. We now apply it to a multicom-
ponent system. To understand the underlying physics an
simplify the algebra, it is practical to use Lagrangian coor
nates. We letr0 be the initial position of some plasma pa
ticle, and assume that the motion of the particle is given
r (t)5Aa(t)r0, where the propagatorAa(t) is identical for
all particles of the same type. The corresponding fluid vel
ity is then given by Eq.~7!, with

ṽa~ t !5
1

Aa~ t !

dAa~ t !

dt

andAa(0)51. The transformation to the variableAa leads
to significant simplification. The continuity equation b
comes

na~ t !5
n0a

Aa~ t !D
,

with n0a being the initial density. Equation~3! leads to

Ẽ~ t !5
4p

D (
a

qan0a

Aa~ t !D
, ~8!

so that the Euler equation can be put in the closed form

1

Aa~ t !

d2Aa~ t !

dt2
5

4p

D

qa

ma
(
b

qbn0b

Ab~ t !D
, ~9!

which then completely determines the plasma dynamics.
Before proceeding it is first necessary to preclude the p

sibility that two fluid particles starting fromr1 andr2, say at
t50, intersect at some later timet1. Since the trajectories o
3-2
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any two particles are given byAa(t)r1 andAa(t)r2, an in-
tersection is possible only at the origin and it takes plac
and only if the propagatorAa(t1) is identically zero. Only
solutions withAa(t).0 are then physically meaningful i
the cold plasma framework.

We now turn to the boundary conditions. It is useful
introduce the quantities

m~ t !5(
a

man0a

Aa~ t !D
, r~ t !5(

a

qan0a

Aa~ t !D
,

which represent the mass and charge densities of the pla
respectively. The fluid velocityV and current densityj can
then be put into the form

V52
1

D

1

m~ t !

dm

dt
r , j5(

a
qanava52

1

D

dr

dt
r ,

where both right-hand sides are total derivatives. Equa
~4! can thus be integrated to

m~ t !R~ t !D5const, ~10!

which confirms total mass conservation. UsingR(t) and the
expression~8! for Ẽ, we can calculate the electric fields o
the plasma boundary

Ein5
4p

D
r~ t !R~ t !, Eout50, ~11!

the latter being valid for any plasma with radial symme
and overall plasma neutrality. Equation~5! then becomes

ds

dt
1

D21

R~ t !

dR

dt
s~ t !52

1

D

dr

dt
R~ t !2

dR

dt
r~ t !, ~12!

where Eq.~10! was used to get rid ofm(t). Equation~12!
can be put into the integrable form

d

dt FR~ t !D21s~ t !1
1

D
R~ t !Dr~ t !G50,

which simply verifies charge conservation. Thus, we hav

s~ t !52
1

D
r~ t !R~ t !, ~13!

which is a consequence of overall plasma neutrality. Fr
Eqs.~11! and~13! we see that the boundary condition~6! for
the electric field is satisfied exactly. The problem is th
reduced to solving Eq.~9!.

IV. RESULTS

We see that the dynamics of the system is solely de
mined by Eq.~9!. For simplicity we now consider a two
component plasma with equal number of negatively~e! and
positively ~i! charged particles andqe52qi . We have then
two second-order equations, namely
04640
if

a,

n

n

r-

d2Ae~ t !

dt2
5

vpe
2

D F 1

Ae~ t !D
2

1

Ai~ t !DGAe~ t !, ~14!

d2Ai~ t !

dt2
5

vpi
2

D F 1

Ai~ t !D
2

1

Ae~ t !DGAi~ t !, ~15!

where vpa5(4pqa
2n0a /ma)1/2 is the plasma frequency o

the speciesa5e,i . Recall thatAa(0)51 andD is the di-
mension of the system. The equations are valid as long
Aa(t).0, otherwise the trajectories intersect and collap
occurs.

The simplest solutionAa51 corresponds to an equilib
rium of the cold plasma cloud. It should be mentioned th
the equilibrium exists only because of the neglect of
pressure forces in the governing equations. Generally
plasma tends to expand, forming both a front moving f
ward and a backward propagating rarefraction wave@11#.
Any constant-density cloud will thus be destroyed in a tim
R0 /cs , the ratio of the plasma half-size and the sound spe
However, this time scale is large compared with the period
the plasma oscillations studied here.

For small~linear! oscillations around the equilibrium, w
readily obtain two characteristic modes. One correspond
the expected plasma oscillations with the frequency (vpe

2

1vpi
2 )1/2 and the other is a zero frequency mode. The latte

confirmed by the existence of a solution withAe(t)5Ai(t),
and both functions being linear int. The solution describes
plasma expansion with constant speed. That is, the clou
unstable even in the pressureless model.

Our results are valid for arbitrary mass ratio. Nontrivi
new results can also be obtained for electron-ion plasmas
this case, we consider oscillations in the expanding plas
cloud and neglect terms of orderme /mi . We have then

Ai511
V0t

R0
,

where the constantV0 is the fluid velocity. ForV0,0 the ion
trajectories inevitably intersect, resulting in collapse of t
solution, and forV0.0 the plasma expands. Note that d
spite the small mass ratio, the ions do move and there
affect the electron dynamics. The latter is described by

D
d2Ae

dt2
1

1

~11t/k!D
Ae~ t !5

1

Ae~ t !D21
, ~16!

wheret5vpet is a dimensionless time, and the paramete

k5
vpeR0

V0

is the ratio of the characteristic ion and electron time sca
in this problem. ForV050, Eq. ~16! was considered by
Dawson@3#, who obtained solutions for fixed ions.

We now take into account the ion dynamics. Equati
~16! is linear if D51 ~e.g., in the slab geometry!. In this case
we can directly solve it to obtain
3-3
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Ae5Ai1AAi@c1J1~2kAAi !1c2Y1~2kAAi !#,

whereJ andY are the Bessel functions of the first and seco
kind. The constantsc1,2 should be chosen to satisfy the co
dition Ae(0)51.

In practice, the ratiok is usually large. The expression fo
Ae can then be simplified to

Ae5Ai1CA4 Aisin@2k~AAi21!#, ~17!

whereC is a constant. The other plasma parameters can
be readily obtained. ForV0→0 our solution becomesAe
511C sinvpet, which is similar to that given earlier@4#.
Equation~17! shows that the electron oscillations are bo
aperiodic and modulated by the ion motion.

Let us now consider the possibility of collapse. It is cle
from Eq.~17! thatAe can change sign, resulting in trajecto
intersection. Such a collapse occurs ifC exceeds some criti
cal value C* (k)'1. Figure 1 shows the trajectories o
neighboring electrons fork550 and two values ofC. The
regular trajectories forC,C* are replaced by the intersec
ing ones forC.C* . In the latter case our cold plasma sol
tion becomes invalid after a finite time.

For D52,3, Eq.~16! is both nonlinear and nonautonomi
Analytical solutions can only be obtained for either sm
oscillations or nonlinear ones withV050. More general
cases must be obtained numerically. All solutions show t
the nonlinear oscillations are modulated and aperiodic. F
thermore, for time scales comparable with 1/vpi , the terms
of orderme /mi cannot be neglected. Equations~14! and~15!
can no longer be separated, and must be solved numeric

An interesting case is the electron-positron plasma w
me5mp , so that the plasma frequencies in Eqs.~14! and
~15! are equal. The motion of the positrons must thus
taken into account from the very beginning. Numerical so
tions for this case are included in the next section.

V. SIMULATIONS

In this section we obtain numerical solutions of Eqs.~14!
and ~15! for self-consistently evolving electron-ion an
electron-positron plasma clouds. To see how these spe

FIG. 1. Coordinate~arbitrary units! versus time for neighboring
electrons:~a! regular behavior;~b! collapsing solution.
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solutions might appear in reality, we have also perform
particle-in-cell~PIC! simulations of the corresponding prob
lem in one dimension. We followed 104 electrons and as
many ions or positrons. Due to symmetry only the regionx
.0 needs to be considered in the computation. Each par
represents a layer with a surface chargeq, and n0 is the
number of such layers per unit length att50. The electric
field is normalized by 4pqn0R0, the time by 1/vpe, and the
length byR0.

Initially the electrons and ions~positrons! were distrib-
uted with constant and equal densities, and a sharp boun
at x5R0 was assumed. To allow for plasma expansion
total area of the computation was taken to be considera
larger than R0. The boundary atx50 representing the
plasma center was taken to be both absorbing and reemit
and the boundary at the vacuum side was assumed to
absorbing only. The particles were initialized with a Ma
wellian velocity distribution such thatR05200lde, where
lde is the electron Debye length. The electric field was co
puted by integrating the charge density starting fromE50 at
x50. In the simulation the plasma was warm, so that
validity of our analytical cold plasma model can be studie
The temperature ratio was 25 for an electron-ion plasma,
unity for an electron-positron plasma.

In general, the plasma slowly expands, forming both
front and a rarefraction wave. Oscillations were initialized
forcing the particles to perform additional~nonthermal! mo-
tion with initial velocities proportional to their positions
Thus, the initial regular particle velocity inside the plasm
ranges from 0 atx50 to R0dAa /dtu t50 at x5R0. The mag-
nitude dAa /dtu t50 was taken to be small enough to avo
large velocities of the boundary particles. In most case
linear approximation to Eqs.~14! and ~15! should thus be
sufficient.

First we consider small oscillations. The velocities of t
boundary electrons and ions were 2v te ~thermal velocity! and
0.9cs , respectively, and the mass ratio wasmi /me5900. To
obtain the density we evaluated the fluid velocityV0 from
the initial conditions, and took the regionx,0.8(R01V0t)
as the uniform-density center of the plasma. The correspo
ing values ofna(t) were compared with that predicted b
Eqs.~14! and ~15! as shown for the electrons in Fig. 2. Th

FIG. 2. Electron density versus time for small perturbations. T
simulation result~points! agrees well with that of theory~solid
line!.
3-4
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density decrease due to the plasma expansion can clear
observed. The theory agrees well with the simulation
several tens of oscillation periods.

Next we consider the case of strong perturbations:
velocity of the boundary electrons was taken to be 20v te,
mi /me52500, anddAi /dtu t5050. Figure 3 shows the typi
cal spatial behavior of the electric field from the theory a
simulation at one particular instant (vpet512).

We see that Eqs.~14! and ~15! correctly describe the be
havior of the electric field inside the evolving plasma. W
have also obtained the best linear fit of the electric field
the uniform-density center of the plasma and compare
with the theoretical value ofẼ, as shown in Fig. 4. Good
agreement occurs for several periods. The simulation sh
a steady modulation of the electric field. This asymme
modulation may be attributed to the mixing phenomena
to the nonuniform density at the plasma boundary@3#.

We have also simulated an electron-positron plasma w
me5mp . The plasma also expands naturally, but with a r
larger than that of the electron-ion plasma. The size of
boundary layer quickly becomes comparable to that of
uniform-density region. Oscillations were initialized in th
expanding layer. The boundary electrons and positrons w
given the initial velocities 20v te and 10v te, respectively. The
size of the uniform-density region is again approximat

FIG. 3. Typical behavior of the electric field for large perturb
tions. The theory~thick line! correctly matches the linear part of th
electric field inside the plasma.

FIG. 4. Ẽ versus time obtained from the simulation~points! and
theory ~solid line!. The plasma is significantly perturbed.
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given byR01V0t. The theory agrees well with the simula
tion, as shown in Fig. 5 for the electric field. The plasm
density decreases considerably within the simulation pe
because of the fast expansion, the rate of the decrease is
in a good agreement with the theory.

All the above solutions correspond to cases withV0.0,
e.g., the plasma expands. If initially one hasV0,0, the so-
lution of Eqs.~14! and~15! shows collapse behavior. That i
Aa(t) tends to zero for one of the species, and the den
tends to infinity. The collapse is related to the trajectory
tersection atx50.

Collapse rapidly occurs for very strong perturbations w
dAe /dt;vpe. For instance, let us consider an electro
positron plasma with dAe /dtu t50520.5vpe and
dAp /dtu t5050. We used 105 particles for the simulation. A
typical electron and positron density evolution at one p
ticular instant (vpet52.2) is shown in Fig. 6.

The analytical theory is now applicable only to a rapid
shrinking region with approximately constant density ne
x50. We determinedna(t) for x,2lde and compared it
with the theory. The positron density presented in Fig
clearly shows tendency of collapse, but the singularity p
dicted by the theory was not realized in the simulation. N

FIG. 5. Ẽ versus time for a rapidly expanding electron-positr
plasma. Simulation~points! is in good agreement with theory~solid
line!.

FIG. 6. Electron~thin line! and positron~thick line! density
versus position for a collapsing solution. The theory describes o
the small constant-density region near the plasma center.
3-5
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that collapse first occurs for the positrons, although only
electrons were initially perturbed.

VI. CONCLUSION

In this paper we have considered the nonlinear evolu
of a multicomponent plasma cloud. The plasma bound

FIG. 7. Positron density from simulation~points! and from
theory ~solid line! versus time for a collapsing solution.
I.
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and oscillations are allowed to evolve naturally. Analytic
solutions for cold plasma oscillations are obtained. The
lutions are exact in the sense that no approximation~e.g.,
series expansion or higher harmonics truncation! has been
made. The evolution is subject to realistic boundary con
tions. In contrast to the earlier works on bounded plasm
where a fixed physical boundary is usually assumed, we
low for the fact that the plasma boundary may not be
original one. In fact, our results are also applicable to i
lated plasma clouds in vacuum. Furthermore, we do not
ply the two-time-scale approach and do not use the large
mass approximation. All particles are treated at the sa
level in terms of Lagrangian variables. Thus equations
tained are also applicable to electron-positron plasmas.
solutions show that the plasma oscillations and bound
evolution are strongly related. The results agree well w
that of PIC simulations for the regimes of interest.
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